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Reduction of the Joint Clearance Effect for a Planar
Flexible Mechanism
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When the operating speed of mechanical systems is increased, unpredictable dynamic prob­
lems are induced due to joint clearances and link elasticity. To solve these problems, quantita­

tive prediction of the effects of joint clearance and link flexibility on the system is needed. This

study has two principal objectives. The first is to develop a design method for eliminating the
loss of contact at joints with clearance. The method utilizes three dimensionless parameters

which govern the dynamic behavior at the instance when contact loss is predicted. These

parameters are determined to maintain joint contacts throughout the operating cycle. The links
in this mechanism are assumed to be rigid. The second objective of this study is to investigate
the influence of the flexibility of the links. Using a finite element method, we found that link

n~xibility decreases the possibility of contact loss as well as the impact force at joints with
clearance.
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1. Introduction

During high speed motion of mechanical lin­

kages sometimes unpredictable dynamic problems

due to the link elasticity and the joint clearances
occur. These problems result in degradation of

the p,:rformance and life of the system. To solve
these problems, the effects of joint clearance and

link l1exibility on the system performance are

needed. It is also desirable to design mechanisms

taking these effects into account.

Treatment of the complete problem(i.e., con­
sidering both the clearance and link flexibility) is

compl icated by the nonlinearities arising from

joint clearances and large angular motion cou­

pled with flexibility effects. Moreover, the inclu­

sion of flexibility increases the dimensionality of
the formulation. The resulting problem is beyond

the analytical capabilities of most design estab­

lishm':uts.
This study has two principal objectives. The

first is to develop a design method for eliminating
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contact loss at that joint with clearance. The
method is to introduce three dimensionless

parameters that govern the dynamic behavior at

the instant that contact loss is predicted, and to
change these parameters to satisfy the condition

that contact is maintained throughout the entire
operating cycle. In this case, the links that are part

of the mechanical system are assumed to be rigid.

When the operating speed is increased, the effects
of link elasticity become significant. That is the

second objective of this study. The flexibility of

the links is modeled by a finite element method.

The study found that link flexibility has a direct

inl1uence upon whether contact is maintained or

lost, i.e., link flexibility decreases the possibility
of contact loss as well as the impact force at joints

with clearance.

Early researchers analyzed one-dimensional

impact problems due to clearances in the
joints(Dubowsky, 1974) using repulsive coeffi­

cients and momentum conservation. Town­

send(l975) and Miedema(l976) developed the
pendulating model extending this one­

dimensional model to two-dimensional rotational
joints, where the surface of the joint bearing was
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assumed to be rigid. The motion after impact was
again determined by the repulsive coefficient and
momentum conservation.

Dubowsky(l97I ) introduced an impact pair
using Kelvin-Voigt model(equivalent spring &

damper model) that represents the bearing surface
compliance. Advancing this model, Dubowsky

and Gardener(l975) developed the IBM(lmpact
Beam Model) in which link flexibility is included,

and found that link flexibility decreases the con­

tact forc:e at joints with clearance. Since the

analysis of these problems requires a large
amount of calculations, various methods to pre­

dict comact loss based on the analysis of zero­
clearance mechanisms(so cal1ed nominal mecha­

nisms) have been developed. The works of Earles
and Wu{l975), Haines(l980), Fawcett and Bur­
dess(l97 I) and Dubowsky et al.(l979) are exam­

ples.

Through experimental and analytical works,

Earles and Wu proposed an empirical formula for

prediction of the so cal1ed fly-past phenomena.
According to their work, contact loss wil1 occur

at the instant when the bearing force becomes

significantly reduced in magnitude R along with
rapid change in direction b. Thus, the contact loss

wil1 occur when I bl R I > 1. However, as Haines
et al. pointed out, this formula is not of dimen­
sionless form, thus losing its generality. Subse­

quently, various dimensionless formulas were

proposed. Haines( 1980) derived three dimension­

less parameters for a general planar mechanism

with om: clearance joint and presented a design
chart showing ranges of parameter values of

which contact loss wil1 occur. Dubowsky et al.

(1979) proposed another dimensionless parameter

named IPN(lmpact Prediction Number) and

noted that the occurrence of contact loss is very

much dependent on the curvature of the joint path
as wel1 as on the driving speed and magnitude of

the clearance.
These studies laid down simple design criteria

for prev{:nting the contact loss phenomena. Unfor­

tunately, in spite of these successful studies, few

design methods which systematical1y utilize the
above mentioned criteria have been developed.

Fawcett and Burdess(l972) considered bearing

force loci to reduce the clearance effects. Three
methods were suggested. They reported that
except for the force-form-closure method( Earles
and Kilicay, 1979), the use of balancing masses
and balancing springs may require a trial and

error approach to determine the correct
configuration( Fawcett and Burdess, 1972).

Haines( 1980) come to the same conclusion.
Though not given in dimensionless form,

Earles and Wu's criterion where the validity was

shown through experiments by Earles and
Kilicay( 1971) and through simulation by
Haines( 1980), was used for the systematic design

of mechanism to be free of contact loss by several
researchers(Park and Kwak, 1987). Here the

design methods use some balancing masses and

springs, respectively.
In the present study, Haines' design chart and

optimization techniques are used to design con­

tact loss-free mechanisms. In this case, the objec­
tive function is a mass moment of inertia of

additive balancing mass. The effects of link flexi­

bility on the optimalIy designed mechanism are
also considered.

2. Optimal Design of Mechanism with
Clearance using Haines'

Design Chart

Haines( 1980) derived the equations that

describe the conditions at a general idealized

revolute joint with clearance, but with no

hydrodynamic lubrication present. The equations

are governed by three dimensionless parame­

ters(hh h2 , h:J) that depend on the nominal
motion, mass distribution and influence coeffi­

cients of the linkage in which the joint appears, as
wel1 as the clearance magnitude. The equations

were solved numerical1y for a range of values for

hh h2, and h3• The results enable the(h l ,h2,h3 )

space to be divided into two regions, one contain­

ing the values for which contact is lost at some

time during the motion, the other in which con­
tact is maintained throughout. The threshold

surface between these two regions is in the form of

a contour map, with hI and h2 as polar coordi­

nates, and contours joining equal values of h3• In
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each case contact is lost on the inside of the
contour and maintained on the outside.

In this paper, a systematic method is presented
that moves the design point(on the chart) out­
wards on the contour by adding a balancing mass
to the linkage. In this case, the mass moment of
inertia of the balancing mass is chosen as the
objective function to be minimized in the optim­
ization. An offset slider crank mechanism is used
as a numerical example.

2.1 Haines' design chart
Some assumptions are adopted to reduce the

complexity of the problem to an extent that a
general analysis becomes possible: that is, it is
assumed that the joint can be extracted from the
mechanism upon which the remainder of the
mechanism is left undefined provided only that it
is consistent with the assumptions. The key
assumption of these ones is that whether contact
is lost or maintained is determined by the condi­
tions obtained at 'tlypast' : that is, moments in the
cycle when the nominal bearing load vector un­
dergoes a rapid change in direction and a simulta­
neous reduction in magnitude. The problem then
can be reduced to describing the relative motion
of the pin in the journal, as shown in Fig. 1,
during the short interval containing the 'tlypast'
instant. The governing equation of motion of the
system is a second order differential equation
with three dimensionless parameters. These
parameters are given by Haines(l980) as fol1ows :

Fig. 1 Typical revolute joint with clearance

hI = R:/(R~Z/3eZ/gMJ/g)

hz=2h
hg=e (I)

Where R: and R~ are u and v-directional joint
contact forces respectively with dot denoting for
the time derivatives. And Mo is the generalized
inertia, hand e are the angle of the principal
direction and radius of the Mohr circle of the
generalized inertia(Haines, 1980) respectively.
Also the design chart, such as Fig. 2, can be
constructed by searching the threshold surface(on
this surface, the minimum joint contact force
becomes zero) from the results of the governing
equation for a range of values of hI> hz, and h3•

For a given mechanism, the h-parameters can
be calculated through the analysis of a nominal
mechanism without clearances. The current state
of the design can then be placed on the design
chart. From this, one can be determined whether
contact is lost or maintained. If the design point is
inside of the contour corresponding to the current
hg, then contact is lost. In this case, some design
change is needed(i.e., the current design point
must be moved outside of the contour using an
appropriate methods) to design a contact loss-free
mechanism. Haines proposed three methods to
avoid contact loss as fol1ows :

(a) Use a spring element to increase the contact
force between the pin and journal in a direction
chosen so that the value of R: is increased. This
method has no effect on any of the variables in the

1.6-,-----r-------~

1.2

0.8

0.4

-04

- O. 8 -I---,---=-+----r-L---r----r---I
-0.8 -0.4 0.0 04 08 1.2 1.6

Fig. 2 Design chart
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2.2 Formulation of optimal design problem
A general optimal design problem is to find the

valuef, of the design variables b at which an
objective function

above analysis other than R~, and hence hi' The
effect in the design chart is thus to move the
design point radially outwards.

(b) Reduce the magnitude of the clearance, e.

This method, like(a), implies change in hi with
constant values for hz and h3.

(c) Add a balancing mass to the linkage. Since

this would affect all three dimensionless parame­
ters, the selection of a suitable counterweight size
and position for this purpose is a difficult prob­
lem.

Methods(a) and(b) have very practical restric­
tions. In case of(c), a systematic procedure is

required to determine the balancing mass size and

position. Haines has pointed out the difficulties in
accomplishing this.

In the present study, a design method using an
optimization technique, is proposed that deter­

mines the size and position of the balancing mass
to avoid contact loss.

Y()= Y()( b) (2)

represent the change of the functions Yo and Y I

with respect to a change in design variables. In
this case, the objective function is an explicit
function of the design variable. Thus the sensitiv­

ity of the objective function can be calculated by
the simple partial differentiation. But constraint
function Y, is expressed in terms of h-parameters

that are implicit functions of the design variables,
where 'function' in this case does not mean a

mathematically well-defined function, but rather a

complex algorithm. Therefore, a finite difference
differentiation technique was adopted to calculate
sensitivities of the constraint function with respect

to the design variables. Sensitivity vectors of
objective function and constraint function are as
follow:

aYo/ab=[~+M,2b l bz, 2b l bJ]=/OT (6)
a.Y;/ab =[sa.Y;/ ahk' ahk/ablo

sa.Y;/ah k ' aJh/abz, sa.Y;/ ahk' ah k / ab3]
=[a.Y;/ahl, a.Y;/ ahz, a.Y;/ ah3]

[ah;/ab j b3
~[a.Y;/ahl> a.Y;/ahz, a.Y;/ah3]

[Dh;/Dbj ]3X3
=r i,j=I,2,3 (7)

where the subscript k is for summation from I to
3 and

where: bh bz, and b3are design variables and f( h lo
hz) is the threshold surface. To solve the optimal

design problem, we need the sensitivities that

In this study, the mass moment of inertia of the

balancing mass is selected as the objective func­

tion, with counterweight size( m) and position( a,

b) as design variables( bl, bz, b3). Also, a con­

straint condition is imposed so that the current

design point is positioned under the threshold

surface. This design problem can then be stated as
follows:

And afI ah;, i= I, 2 are calculated by the follow­

ing two steps:

Step I. Divide the threshold surface into 4­

node rectangular elements.

Step 2. The value of the function f and its

derivatives with respect to hi and hz in elements
are approximated by an isoparametric interpola­

tion function.

2.3 Solution procedure of optimal design
problem

With the design sensitivity information comput­
ed in the previous section, one can proceed to

implement the optimization algorithm of choice.
A gradient projection technique with constraint

error correction(Haug and Arora, 1979) was used

here for design optimization.

The gradient projection algorithm for design

(8)

[ay,1ahl' ay,/ahz, ay,1ah3 ]

=[ -af/ahlo -aflahz, I]

(5)

(3)

(4)

Y;= Y;(b) =0, i= I, ... , P
Y;= Y;(b)~O, i=p+ I, ..., q

minimize

Yo=bl(M+bD
subjected to

Y,=h3 -f(hio hz);£O

h,=h,(blo hz, bJ), i=l, 2, 3

is minimized under the constraints
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where

In Section 2, we discussed a design method for

mechanisms with clearance, where the links and

clearance joints are assumed to be rigid. But many

researchers have found that the combination of

elasticity in the links and joint clearances has a

substantial effect on the dynamic behavior of the

mechanism. Thus an investigation of the effects of

link elasticity on the dynamics of the mechanism,

designed using the method proposed at section 2,

is needed.

In this section, a mathematical formulation of

mechanism dynamics considering both link elas­

ticity and connection clearance, using the finite

element method(Bahat and Willmert, 1976), is

presented.

3.1 Equations of motion
Figure 3 shows a general finite element i of link

k. The displacement vector at any point A along

the element measured from the origin of the fixed

coordinate system( 0 : XV) is given by :

S=(X,cos(g)+ Yisin(g)+x+uxli
+( Yicos(g)- X,sin(g)+ Uy)j (\6)

where (XJ, Yi) is the rigid body position of end

I of the element, x is the rigid body axial distance

from end I to the general point A, g is the rigid

body angle between the centerline of the link and

_____ --- ----' - ~_I

db' II is sufficiently small, terminate the process.

Otherwise return to step 2 with b(J+') as the best

available design.

3. Analysis of Flexible Mechanisms
with Clearance

(9)

(12)

(14)

( 15)

(10)

(I I)

a1/J, ~ 1/J,(b', bi+LJbi)-I/JI(b)
abi LJb,

[ = [a1/J, lil lil] T

abl ' ab2 ' ab3

Step 4 : The change in design db is derived

using Kuhn-Tucker necessary condi­

tions applied to a linearized problem

and is given as

8b'= W-'[ att +[tL
I

]

8b2 = - W- 1[tL 2

Btl 1= - JTW- 1 att, BtL2= 1/J,

B=JTW-'[ (13)

Here, W is a positive definite weighting matrix to

be selected by the designer. Put

in which r is the reduction ratio of cost function

per iteration and db' and db2 are given as

optimization in this particular case can be stated

as follows:

Step 1 : Estimate an initial design b.
Step 2: Calculate the h-parameters constraint

function value, and objective function

value at the present design stage.

Step 3 : Check to determine whether the con­

straint function Yi is violated or not. If

not violated, proceed with an uncon­

strained optimization step, followed by

a return to step 2. If the constraint

function Yi is violated, calculate the

design sensitivity vector of Yi by the

finite difference method:

b(J+l) = b(J)+ 8b

Step 5: The quantity

where b' is a vector that contains all of the

design variables except bi' The design sensitivity

vector [ is defined as

is monitored. If all constraints are satisfied and II Fig. 3 Finite element model
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The external work associated with the element is :

The kinetic energy of the element is given by :

u=+lL[EIU"~+ EAxu'~]dx (19)

where E is the modulus of elasticity and

(22)

(23)

Ux= !I(X)UIU) + fs(X)U5(t)

Uy= !2(X) uzU) +h(x) U3U)

+ NX)U4(t) + !6(X)U6(t)

+!?(X)U7U)+ !s(x)us(t)

5 N"

L= ~ ~(T-U+ W)ik
k=-li=l

!J(x)= 1-8

!zCY) = 1-1083 + 1584 -685

Nx) = L(8 -683 +884
- 385

)

Nx) = U(8 Z
- 383 + 384

- 85)/2

fs(x)=s

fB(.Y)= 1083-1584+685

Hx)=L( -483 +784 -385
)

!s(x) = L Z(S3- 284 + s5)/2

s=x/ L (24)

where

The terms UI and U5 are the axial deformations

at the left and right ends of the element respective­

ly, and uz and U6 are the transverse displacements

at the ends, which are functions of time. U3 and U7

are the end rotations, while U4 and Us are the end

curvatures. Substituting the approximations of Ux

and Uy into the Lagrangian results in a function

of the generalized coordinates UI' "', U8' These

coordinates, for all of the elements and links, are

not independent; i.e., they are related by the

compatibility condition between adjacent ele­

ments. Following the general procedure of the

finite element methods, however, we shall treat

the element coordinate Ul> "', UB as independent

and derive the element equations of motion and

then assemble the master equations later. The

element equations are obtained by differentiating

where N k is the total number of elements in the

k-th member and s is the total number of mem­

bers in the mechanism. Substituting the above

energies and work expressions into Lagrangian

function, it becomes a function of the unknown

deformations Ux and Uy after the rigid body

dynamics is determined. Both Ux and Uy are

functions of position x along the elements and

time. The usual approach in finite element work

is then to approximate Ux and Uy'

In this study, Ux and Uy are approximated by

I st and 5th-order Hermite polynomials respective­

Iy; i.e.

(20)

(18)

(17)

I=Ix/ P

T=+lL(pAxSOS

+ Ix( i + ft (~; )ndx

I ..
+-y(MI S 0 s I x~O

+MzSoS IX~L)
where P is the mass density, Ax and Ix are the

cross-sectional area and mass moment of inertia

respectively, and L is the length of the element.

The second term on right side of the above kinetic

energy expression is a rotary inertia term. The last

two terms correspond to the kinetic energy of a

slider or additive balancing mass.

The strain energy due to bending and axial

deformation is:

W= lL[¢)xUx+ ¢)yUy+ Mzu'y]dx (21)

wh(:re fx' fy, and Mz are externally applied

distributed forces in the x and y directions and

moment respectively. Concentrated forces and

moments can be considered as well using the delta

function to form equivalent distributed forces and

moments.

Lagrangian function is then given by :

the horizontal axis, and ux and U y are the axial

and transverse deformations respectively of point.

A due to elastic effects measured from the rigid

body position. Differentiating this expression

with n:spect to time results in the linear velocity,

due to both rigid body and elastic effects, of any

point in the element. It is noted that the unit

vectOr5, i and j are attached to a moving coordi­

nate system and thus vary in direction with

respect to time. The angular velocity of any

differential line segment on the centerline of the

element is given by :
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These equations result in the following ordinary
differential equations:

the Lagrangian with respect to element coordi­

nates producing

(31)

ri=R+ U,- rdDp
rj=R+ l1J- rdjDp
vi=R+ Ui- rdiDp
vj=R+ l1J- rdjDp

3.2 Modeling of the planar revolute joint

with clearance
Figure 4 shows a planar revolute joint which

connects the links i and j, where the dotted lines
represent the configuration of the nominal rigid

mechanism. We define R as the position vector of

the revolute joint of the nominal mechanism, Ui
and Uj as the displacement vector of the joint axis

point P of the nominal mechanism due to the link

elasticity, and Ci and C as the contact points on
the pin and the journal bearing, respectively.

Therefore, the vectors ri and rj, which are the
position vectors of C and C j in global coordi­

nate system, and the velocity vector Vi and Vj of

these points can be written as

The global mass, damping, and stiffness

matrices are all functions of the rigid body
motion of the mechanism and therefore the rigid
body dynamics must be solved first. Once this is

obtained, the above system of equations must be
solved to determine the nodal displacement vector

Q. Since the system matrices(M, C, K) and

forcing vector F are functions of rigid body
motion and time, we need a differential equation
solver in order to solve these equations. The
second order differential equations of motion are

reduced to first order form by a change of vari­
ables and solved by a predictor/corrector numeri­

cal integration algorithm(Shampine and Gordon,

1975).

(25)

(26)

o

o

mil + eli + ku= f(t)

where m, e, k depend on the rigid body motion
of the mechanism as well as integrals of the

products of the Hermite polynomials. u is a
vector of element nodal coordinates:

where U are the transformed element coordi­

nates and g is rigid body rotation angle. Then the

element differential equations becomes:

The forcing function f( t) also depends on the

rigid body motion of the mechanism as well as the
externally applied forces. The element nodal vari­

ables within the vector u are in terms of a moving
coordinate system attached to each link. In order

to assemble the elements and to equate corre­
sponding coordinates, a transformation of ele­

ment variables u is necessary. The usual
approach is to transform all coordinates to the

fixed global coordinate X and Y direction; i.e.,

the transformation matrix T from u to U is
I

cosy siny 00:

-siny -cosyOO:
o 0 101

I

o 0 0 I'
T= ----------- --------+----- -- -~ -------- (28)

I cosy SillY 00
I

i-siny -cosy°0

: 0 ° 10
I

i 0 0 0 I

Once the element equations are calculated, the

assembling process is done using the correlation

between the transformed element nodal vari­

able( V h i= I, 8) and the globally defined nodal
variable( Qi, i = I, n), where n is total degrees-of­

freedom of the mechanism. The result will be a
system of ordinary differential equations of the
form:

MQ+CQ+KQ=F

(29)

(30)

o

Fig. 4 Model of the planar revolute joint with clear­
ance
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z 500.

Section A-A
Fig. 6 Introduction of the design margin M

/
Original
contour surface

y Lowered
contour surface

/

the crank and the connecting rod. Figures 7, 8,9,

and 10 show the resulting joint contact forces at
the clearance joint and corresponding numerical
values are listed in Table 2. Figure 7 shows the
joint contact force for the original mechanism,
and Fig. 8 shows the results of the optimally
designed mechanism with margin equal to 0.0.

(33)

4. Results

Fi= k(~ Dp}lIJpeWp+ c{( l);- Vi)
Fj = -Fi (32)

where le and c are the joint stiffness and damping
coefficients respectively, and e is the magnitude

of clearance between the pin and journal.

where M is the design margin. Introducing a

design margin means graphically lowering the

threshold surface by m along the h3-axis as shown
in Fig. 6. We obtained the optimal design for

three s,eparate values of this margin, i.e., 0.0, 1.0

and 104. Results were obtained using a dynamic

analysis of the slider crank mechanism with rigid
links E.nd clearance at the joint which connects

where Dp is a unit vector along Dp( = l);- V,).
The expressions rdi and rdj represent for the
radii olf the pin and journal respectively.

Once the relative position and velocity between
the pin and journal are calculated, we can find the
contact forces as

An offset slider crank mechanism as shown

Fig. 5 is considered. Its dimensional and inertial
data are given in Table I. We introduced a

margin on the optimization constraint which

specifit:s the threshold on Haines' design chart:

z
c
c
u

o.o-l--------lL..-------j
180. S40.

Cran:t< ur:gl~ ( Jet]. )

Fig. 7 Contact force of the original mechanism

Fig. 5 An offset slider crank mechanism

Table 1 Properties of example mechanism
- 500

Fig. 8 Contact force of the mechanism that is
optimally designed with margin 0.0

~~III"\//
o

1. (1\1. S J (,

w
c.
w
C
o
u

Length(m) Mass(Kg)

Symbol Quantity Symbol Quantity

12 0.051 M2 0.114

·er 13 0.152 M3 0.341
- - M. 0.341

s 0.051 - -

Crank
Coupl

Slider

Offset
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Table 2 Results of optimal design with constraint

margins

Margin Optimum values

m 0.0980 hi 1.15
0.0 a 0.0004 h2 -43.05

b 0.0002 h3 0.78

m 0.1500 hi 2.39
1.0 a -0.0873 h2 -41.30

b -0.0197 h3 0.59

m 0.1605 hi 3.09
1.4 a -0.1177 h2 -35.60

b -0.0542 h3 0.45

These results are nearly the same, because origi­

nal mechanism is positioned nearly on the thresh­

old surface of the design chart. Thus the optimally

designed mechanism with margin zero is only

slightly modified from the original mechanism.

The joint contact forces of the optimally

designed mechanism with margins equal to 1.0

and 1.4 are shown as Figs. 9 and 10, respectively.

In these cases, the contact forces are higher; thus

the chance of contact loss at the clearance joint is

diminished to nearly zero. Figure 9 also shows

some fluctuation in the contact force which would

influence the fatigue life of the joint surface.

Therefore, the optimally designed mechanism

with margin 1.4 is better because of less variation

in the joint contact force as shown at Fig. 10.

The effects of link flexibility on contact loss at

joints with clearance was studied using the theory

developed in the previous section. These studies

were performed through a comparison of results

from four computational experiments. The analy­

sis types for the computational experiment are

classified as

( I ) Original Mechanism with rigid links

( H) Original Mechanism with flexible links

( m) Optimally designed mechanism with rigid

links

( N) Optimally designed mechanism with flex­

ible links

Figures 7 and II show the contact forces at the

joint between the crank and connecting rod in

cases ( I) and (H), respectively. From these

results, we find that the flexibility of links has

direct effect on the contact loss phenomenon, i.e.,

Fig. 7(with rigid links) shows some contact loss,

but Fig. II(with flexible links) shows continuous

500. ,.------------,

540Crank angle ( deg. )

0.0 -1-------------1
180.

1:
u

z500

u
o
D
C
o
u 0.0 -t------------..,,-:l

180. 50.
Cran\(: angle ( deg. )

Fig. 9 Contact force of the mechanism that IS

optimally designed with margin 1.0
Fig. 11 Contact force of the original mechanism with

flexible links

500.

540
Crank angle ( deg. )

IRO.
0.0

-c
o

U

500

:'40.
Crank angle'

D
U
m
D
c
o
u D.O-i-,--------------1

18 'J.
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contact. The stored strain energy excites a vibra­
tion as shown at Fig. II, but this vibration may
be diminished by applying the proper structural
damping. Figures 10 and 12 show the contact
forces for the optimally designed mechanisms
with rigid and flexible links, respectively. As in
the cases of ( I ) and ( II ), link flexibility has the
effects of reducing the rapid change of the contact
force.

5. Discussion

In general, it is known(Dubowsky and Gar­
dener, 1975) that the flexibility of links reduces
the impact forces at joints with clearance. But the
effects on the contact loss itself is unknown, this
is to s,ay, whether the phenomenon which occurs
in riglld link is maintained in the case of flexible
links. This paper presents optimal design results,
using Haines' design chart, for an offset slider
crank mechanism with clearance and studies the
effects of elasticity in links on the design. In
designing a mechanism, positioning the design
point on the threshold surface of Haines' design
chart means that minimum contact force becomes
zero. As a result, there is the possibility of contact
loss if small disturbances occur. Once contact is
lost, significant vibration may occur. That is why
we introduced a design margin on the optimiza­
tion constraint and obtained a satisfactory results
with fairly smoothing joint contact forces addi­
tionally.

From the view point of contact loss phenome­
non, link flexibility has definite effect on the
behavior of mechanisms with clearance. The
analysis considering link flexibility reveals less
contact loss in the mechanism initially designed.
However, when there is no contact loss as in the
optimal design, link flexibility produces some
member vibration along with more variation in
contact force compared with the one ignoring link
flexibility.
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